

²¹⁰Pb in NORM from oil and gas exploration

L.S. Faria¹, R. M. Moreira¹

¹Nuclear Technology Development Center, Presidente Antônio Carlos Avenue, 6627, Campus UFMG, Pampulha, Belo Horizonte – MG, Brazil.

OBJECTIVE

The ²¹⁰Pb is found in many sites of extraction system and production of oil and gas. The lead deposits can be transported through the two production systems, supported ²¹⁰Pb and unsupported ²¹⁰Pb. In this context, this work aims to highlight, through literature review, the two ²¹⁰Pb deposit mechanisms.

METHODOLOGY

The radionuclides and other minerals dissolved in the produced water, to reach the surface coprecipitam forming various wastes like scales inside the pipes.

The ²²⁶Ra and ²²⁸Ra are the radioisotopes most conspicuous among those that contribute to the radioactivity of scales. However, the equipment of gas processing plants are generally contaminated on the surface by ²¹⁰Pb produced by decay of ²²²Rn which has high mobility.

In the case of supported ²¹⁰Pb, the ²²²Rn can transit through the pipeline traversing long distances before decaying and form a deposit. The problem becomes more delicate because besides scales be "invisible" this emits low energy gamma radiation hindering the detection and evaluation in-situ.

Thanks

Lígia Faria Isf@cdtn.br